The stellar atmosphere physical system II. An operative sequential algorithm to solve the stellar atmosphere problem
نویسندگان
چکیده
منابع مشابه
The Classical Stellar Atmosphere Problem
We introduce the classical stellar atmosphere problem and describe in detail its numerical solution. The problem consists of the solution of the radiation transfer equations under the constraints of hydrostatic, radiative and statistical equilibrium (non-LTE). We outline the basic idea of the Accelerated Lambda Iteration (ALI) technique and statistical methods which finally allow the constructi...
متن کاملNumerical Solution of the Expanding Stellar Atmosphere Problem
In this paper we discuss numerical methods and algorithms for the solution of NLTE stellar atmosphere problems involving expanding atmospheres, e.g., found in novae, supernovae and stellar winds. We show how a scheme of nested iterations can be used to reduce the high dimension of the problem to a number of problems with smaller dimensions. As examples of these sub-problems, we discuss the nume...
متن کاملParallization of Stellar Atmosphere Codes
Parallel computing has turned out to be the enabling technology to solve complex physical systems. However, the transition from shared memory, vector computers to massively parallel, distributed memory systems and, recently, to hybrid systems poses new challenges to the scientist. We want to present a cook-book (with a very strong, personal bias) based on our experience with parallization of ou...
متن کاملThermalisation of Electrons in a Stellar Atmosphere
We are interested in electrons kinetics in a stellar atmosphere to validate or invalidate the usually accepted hypothesis of thermalisation of electrons. For this purpose, we calculate the velocity distribution function of electrons by solving the kinetic equation of these particles together with the equations of radiative transfer and statistical equilibrium. We note that this distribution can...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Serbian Astronomical Journal
سال: 2019
ISSN: 1450-698X,1820-9289
DOI: 10.2298/saj190215001c